
Articles written by Peat ECR
Stay up to date with our publication list of peatland related science done around the globe.
Follow us on Twitter, receive and contribute to the latest research from the peatland-verse in your personal thread.
2022
Arsenault J, Talbot J, Brown LE, Holden J, Martinez-Cruz K, Sepulveda-Jauregui A, Swindles GT, Wauthy M, Lapierre J-F (2022) Biogeochemical distinctiveness of peatland ponds, thermokarst waterbodies, and lakes. Geophysical Research Letters, 49, e2021GL097492 https://doi.org/10.1029/2021GL097492
Artz RRE, Coyle M, Donaldson‐Selby G, Morrison R (2022) Net carbon dioxide emissions from an eroding Atlantic blanket bog. Biogeochemistry 159:233-250. https://doi.org/10.1007/s10533-022-00923-x
Birnbaum C, Wood J, Lilleskov E, Lamit LJ, Shannon J, Brewer M, Grover S (2022) Degradation Reduces Microbial Richness and Alters Microbial Functions in an Australian Peatland. Microbial Ecology. https://doi.org/10.1007/s00248-022-02071-z
Cole LES, Åkesson CM, Anggi Hapsari K, Hawthorne D, Roucoux KH, Girkin NT, Cooper HV, Ledger MJ, O’Reilly P, Thornton SA (2022) Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene. https://doi.org/10.1016/j.ancene.2022.100324
Crezee B, Dargie GC, Ewango CEN, Mitchard ETA, Emba B. O, Kanyama T. J, Bola P, Ndjango J-BN, Girkin NT, Bocko YE, Ifo SA, Hubau W, Seidensticker D, Batumike R, Imani G, Cuní-Sanchez A, Kiahtipes CA, Lebamba J, Wotzka H-P, Bean H, Baker TR, Baird AJ, Boom A, Morris PJ, Page SE, Lawson IT, Lewis SL (2022) Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Natural Geosciences. 15, 639–644 https://doi.org/10.1038/s41561-022-00966-7
Davidson SJ, Dazé E, Byun E, Hiler D, Kangur M, Talbot J, Finkelstein SA, Strack M (2022) The unrecognized importance of carbon stocks and fluxes from swamps in Canada and the USA. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ac63d5
Davies MA, McLaughlin JW, Packalen MS, vFinkelstein SA (2022) Holocene carbon storage and testate community structure in treed peatlands of the western Hudson Bay Lowlands margin, Canada. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3465
Dettmann U, Frank S, Wittnebel M, Piayda A, Tiemeyer B (2022) How to take volume-based peat samples down to mineral soil? Geoderma. 427:116132 https://doi.org/10.1016/j.geoderma.2022.116132
Errington RC, Macdonald SE, Melnycky NA, Bhatti JS (2022) Estimating lichen biomass in northern forests and peatlands of northwestern Canada in a changing climate. Arctic, Antarctic, and Alpine Research. https://doi.org/10.1080/15230430.2022.2082263
Gaffney PPJ, Hancock MH, Taggart MA, Andersen R (2022) Restoration of afforested peatland: Effects on pore- and surface-water quality in relation to differing harvesting methods. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2022.106567
Goud EM, Touchette S, Strachan IB, Strack M (2022) Graminoids vary in functional traits, carbon dioxide and methane fluxes in a restored peatland: Implications for modelling carbon storage. Journal of Ecology. 110. https://doi.org/10.1111/1365-2745.13932
Gutekunst CN, Liebner S, Jenner A-K, Knorr K-H, Unger V, Koebsch F, Racasa ED, Yang S, Böttcher ME, Janssen M, Kallmeyer J, Otto D, Schmiedinger I, Winski L, Jurasinski G (2022) Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen. Biogeosciences. 19/15. https://doi.org/10.5194/bg-19-3625-2022
Heffernan L, Jassey VEJ, Frederickson M, MacKenzie MD, Olefeldt D (2022) Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw. Global Change Biology. https://doi.org/10.1111/gcb.15758
Heffernan L, Cavaco MA, Bhatia MP, Estop-Aragonés C, Knorr K-H, Olefeldt D (2022) High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages. Biogeosciences. https://doi.org/10.5194/bg-19-3051-2022
Helbig M, Waddington JW, Alekseychik P, Amiro B, Aurela M, Barr AG, Black TA, Carey SK, Chen J, Chi J et al. (2022) The biophysical climate mitigation potential of boreal peatlands during the growing season. Environmental Research. https://iopscience.iop.org/article/10.1088/1748-9326/abab34
Helbig M, Živković T, Alekseychik P, Aurela M, El-Madany TS, Euskirchen ES, Flanagan LB, Griffis TJ, Hanson PJ, Hattakka J, Helfter C, Hirano T, Humphreys ER, Kiely G, Kolka RK, Laurila T, Leahy PG, Lohila A, Mammarella I, Nilsson MB, Panov A, Parmentier FJW, Peichl M, Rinne J, Roman DT, Sonnentag O, Tuittila ES, Ueyama M, Vesala T, Vestin P, Weldon S, Weslien P, Zaehle S (2022) Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Natural Climate Change. 12. https://doi.org/10.1038/s41558-022-01428-z
Hermans R, McKenzie R, Andersen R, Teh YA, Cowie N, Subke J-A (2022) Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes. Biogeosciences. https://doi.org/10.5194/bg-19-313-2022
Howson TR, Chapman PJ, Holden J, Shah N, Anderson R (2022) A comparison of peat properties in intact, afforested and restored raised and blanket bogs. Soil Use and Management. https://doi.org/10.1111/sum.12826
Hupperts SF, Lilleskov EA (2022) Predictors of taxonomic and functional composition of black spruce seedling ectomycorrhizal fungal communities along peatland drainage gradients. Mycorrhiza. https://doi.org/10.1007/s00572-021-01060-3
Islam MT, Bradley AV, Sowter A, Andersen R, Marshall C, Long M, Bourke MC, Connolly J, Large DJ (2022) Potential use of APSIS-InSAR measures of the range of vertical surface motion to improve hazard assessment of peat landslides. Mires and Peat. doi: 10.19189/MaP.2021.OMB.StA.2356
Jassey VEJ, Hamard S, Lepère C, Céréghino R, Corbara B, Küttim M, Leflaive J, Leroy C, Carrias J-F (2022) Photosynthetic microorganisms effectively contribute to bryophyte CO2 fixation in boreal and tropical regions. ISME Communications. 2, 64. https://doi.org/10.1038/s43705-022-00149-w
Kleinke K, Davidson SJ, Schmidt M, Xu B, Strack M (2022) How mounds are made matters: Seismic line restoration techniques affect peat physical and chemical properties throughout the peat profile. Canadian Journal of Forest Research. https://doi.org/10.1139/cjfr-2022-0015
Lemmer M, Xu B, Strack M, Rochefort L (2022) Reestablishment of peatland vegetation following surface levelling of decommissioned in situ oil mining mining infrastructures. Restoration Ecology. https://doi.org/10.1111/rec.13714
Mazzola V, Perks MP, Smith J, Yeluripati J, Xenakis G (2022) Assessing soil carbon dioxide and methane fluxes from a Scots pine raised bog-edge-woodland. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2021.114061
Marshall C, Sterk HP, Gilbert PJ, Andersen R, Bradley AV, Sowter A, Marsh S, Large DJ (2022) Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sensing. https://doi.org/10.3390/rs14020336
Martens T, Burbaum B, Trepel M, Schrautzer J (2022) Climate protection and nature conservation in peatland areas: How does this match with present day agricultural practice? Mires and Peat. doi: 10.19189/MaP.2021.OMB.StA.2289
Mueller R, Maier A, Inselsbacher E, Petiszka R, Wang G, Glatzel S (2022) 13C-Labeled Artificial Root Exudates Are Immediately Respired in a Peat Mesocosm Study. Diversity. 14(9):735. https://doi.org/10.3390/d14090735
Oestmann J, Dettmann U, Düvel D , Tiemeyer B (2022) Experimental warming increased greenhouse gas emissions of a near-natural peatland and Sphagnumfarming sites. Plant and Soil. https://link.springer.com/article/10.1007/s11104-022-05561-8
Oestmann J, Tiemeyer B, Düvel D, Grobe A, Dettmann U (2022) Greenhouse Gas Balance of Sphagnum Farming on Highly Decomposed Peat at Former Peat Extraction Sites. Ecosystems. 25. https://doi.org/10.1007/s10021-021-00659-z
O’Leary D, Brown C, Daly E (2022) Digital soil mapping of peatland using airborne radiometric data and supervised machine learning – Implication for the assessment of carbon stock. Geoderma. 428. https://doi.org/10.1016/j.geoderma.2022.116086
Orella J, Africa DR, Bustillo CH, Pascua N, Marquez C, Adornado H, Aguilos M (2022) Above-and-Belowground Carbon Stocks in Two Contrasting Peatlands in the Philippines. Forests. 13(2):303. https://doi.org/10.3390/f13020303
Page S, Mishra S, Agus F, Anshari G, Dargie G, Evers S, Jauhiainen J, Jaya A, Jovani-Sancho AJ, Laurén A, Sjögersten S, Suspense IA, Wijedasa LS, Evans CD (2022) Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environnement. 3. https://doi.org/10.1038/s43017-022-00289-6
Perrier L, Garneau M, Pratte S, Sanderson NK (2022) Climate-driven Holocene ecohydrological and carbon dynamics from maritime peatlands of the Gulf of St. Lawrence, eastern Canada. The Holocene. 32(8):749-763. https://doi.org/10.1177%2F09596836221095978
Perryman CR, McCalley CK, Ernakovich JG, Lamit LJ, Shorter JH, Lilleskov E, Varner RK (2022) Microtopography matters: Belowground CH4 cycling regulated by differing microbial processes in peatland hummocks and lawns. Journal of Geophysical Research: Biogeosciences. 127:e2022JG006948. https://doi.org/10.1029/2022JG006948
Putra SS, Baird AJ, Holden J (2022) Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands. Hydrological Processes. https://doi.org/10.1002/hyp.14470
Reed MS, Young DM, Taylor NG, Andersen R, Bell NGA, Cadillo-Quiroz H, Grainger M, Heinemeyer A, Hergoualc’h K, Gerrand AM, Kieft J, Krisnawati H, Lilleskov EA, Lopez-Gonzalez G, Melling L, Rudman H, Sjogersten S, Walker JS, Stewart G (2022) Peatland core domain sets: building consensus on what should be measured in research and monitoring. Mires and Peat. doi: 10.19189/MaP.2021.OMB.StA.2340
Schmidt M, Davidson SJ, Strack M (2022) CO2 uptake decreased and CH4 emissions increased in first two years of peatland seismic line restoration. Wetlands Ecology and Management. https://doing.org/10.1007/s11273-022-09858-4
Schwieger S, Kreyling J, Peters B, Gillert A, Freiherr von Lukas U, Jurasinski G, Köhn D, Blume-Werry G (2022) Rewetting prolongs root growing season in minerotrophic peatlands and mitigates negative drought effects. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14222
Serafin A, Pogorzelec M, Bronowicka-Mielniczuk U, Spólna K (2022) Habitat preferences of Comarum palustre L. in the peatlands of eastern Poland. Mires and Peat. doi: 10.19189/MaP.2020.OMB.StA.2150
Singh P, Hájková P, Jiroušek M, Lizoňová Z, Peterka T, Plesková Z, Šímová A, Šmerdová E, Štechová T, Hájek M (2022) Can Sphagnum Removal Reverse the Undesired Succession of Rich Fens under Different Alkalinity and Fertility Levels? Ecological Applications. e2691. https://doi.org/10.1002/eap.2691
Strack M, Davidson SJ, Hirano T, Dunn C (2022) The Potential of Peatlands as Nature-Based Climate Solutions. Current Climate Change Report. https://doi.org/10.1007/s40641-022-00183-9
Swails E, Hergoualc’h K, Deng J, Frolking S, Novita N (2022) How can process-based modeling improve peat CO2 and N2O emission factors for oil palm plantations? Science of The Total Environment. 839:156153 https://doi.org/10.1016/j.scitotenv.2022.156153
Taillardat P, Bodmer P, Deblois CP, Ponçot A, Prijac A, Riahi K, Gandois L, del Giorgio PA, Bourgault MA, Tremblay A, Garneau M (2022) Carbon Dioxide and Methane Dynamics in a Peatland Headwater Stream: Origins, Processes and Implications. JGR Biogeosciences. https://doi.org/10.1029/2022JG006855
Tan ZD, Carrasco LR, Sutikno S, Taylor D (2022) Peatland restoration as an affordable nature-based climate solution with fire reduction and conservation co-benefits in Indonesia. Environmental Research Letters. 17:064028. https://doi.org/10.1088/1748-9326/ac6f6e
Tassinari D, Soares PGS, Costa CR, Barral UM, Horák-Terra I, Silva AC, Carmo WJ (2022) Water retention and pore size distribution in organic soils from tropical mountain peatlands under forest and grassland. Mires and Peat. DOI:10.19189/MaP.2022.OMB.StA.2374
Teickner H, Knorr K-H (2022) Improving Models to Predict Holocellulose and Klason Lignin Contents for Peat Soil Organic Matter with Mid Infrared Spectra. SOIL. https://doi.org/10.5194/soil-2022-27
Tong CHM, Nilsson MB, Sikström U, Ring E, Drott A, Eklöf K, Futter MN, Peacock M, Segersten J, Peichl M (2022) Initial effects of post-harvest ditch cleaning on greenhouse gas fluxes in a hemiboreal peatland forest. Geoderma. 426: 116055. https://doi.org/10.1016/j.geoderma.2022.116055
Van Steenis J (2022) Endangered palsa mire hoverflies (Diptera, Syrphidae) in northern Sweden. Mires and Peat. doi: 10.19189/MaP.2021.MEH.StA.2338
Wright SN, Thompson LM, Olefeldt D, Connon RF, Carpino OA, Beel CR, Quinton WL (2022) Thaw-induced impacts on land and water in discontinuous permafrost: A review of the Taiga Plains and Taiga Shield, northwestern Canada. Earth-Science Reviews. 232:104104. https://doi.org/10.1016/j.earscirev.2022.104104
Wu Y, Xu X, McCarter CPR, Zhang N, Ganzoury MA, Waddington JM, de Lannoy C-F (2022) Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.153579
Zak D, McInnes R (2022) A call for refining the peatland restoration strategy in Europe. Journal of Applied Ecology. dot: 10.1111/1365-2664.14261
Zhang H, Väliranta M, Swindles GT, Aquino-López MA, Mullan D, Tan N, Amesbury M, Babeshko KV, Bao K, Bobrov Q, Chernyshov V, Davies MA, Diaconu A-C, Feurdean A, Finkelstein SA, Garneau M, Guo Z, Jones MC, Kay M, Klein ES, Lamentowicz M, Magnan G, Marcisz K, Mazei N, Mazei Y, Payne R, Pelletier N, Piilo SR, Pratte S, Roland T, Saldaev D, Shotyk W, Sim TG, Sloan TJ, Słowiński M, Talbot J, Taylor L, Tsyganov AN, Wetterich S, Xing W, Zhao Y (2022) Recent climate change has driven divergent hydrological shifts in high-latitude peatlands. Nature Communications. 13:4959. https://doi.org/10.1038/s41467-022-32711-4
Zou J, Ziegler AD, Chen D, McNicol G, Ciais P, Jiang X, Zheng C, Wu J, Wu J, Lin Z, He X, Brown LE, Holden J, Zhang Z, Ramchunder SJ, Chen A, Zeng Z (2022) Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nature Geoscience. 15. https://doi.org/10.1038/s41561-022-00989-0
2021
Ackley C, Tank SE, Haynes KM, Rezanezhad F, McCarter C, Quinton WL (2021) Coupled hydrological and geochemical impacts of wildfire in peatland-dominated regions of discontinuous permafrost. Science of the Total Environment. 782:146841. https://doi.org/10.1016/j.scitotenv.2021.146841
Andrews LO, Rowson JG, Caporn SJM, Dise NB, Barton E, Garrett E, Gehrels WR, Gehrels M, Kay M, Payne RJ (2021) Plant community responses to experimental climate manipulation in a Welsh ombrotrophic peatland and their palaeoenvironmental context. Global Change Biology. https://doi.org/10.1111/gcb.16003
Beaulne J, Garneau M, Magnan J, Boucher É (2021) Peat deposits store more carbon than trees in forested peatlands of the boreal biome. Scientific Reports 11: 2657. https://doi.org/10.1038/s41598-021-82004-x
Burdun I, Kull A, Maddison M, Veber G, Karasov O, Sagris V, Mander Ü (2021) Remotely Sensed Land Surface Temperature Can Be Used to Estimate Ecosystem Respiration in Intact and Disturbed Northern Peatlands. JGR Biogeosciences 126. https://doi.org/10.1029/2021JG006411
Campeau A, Vachon D, Bishop K, Nilsson MB, Wallin MB (2021) Autumn destabilization of deep porewater CO2 store in a northern peatland driven by turbulent diffusion. Nature Communications. https://doi.org/10.1038/s41467-021-27059-0
Davies M, Blewett J, Naafs B, Finkelstein S (2021) Ecohydrological controls on apparent rates of peat carbon accumulation in a boreal bog record from the Hudson Bay Lowlands, northern Ontario, Canada. Quaternary Research, 1-14. https://doi.org/10.1017/qua.2021.22
Davies MA, McLaughlin JW, Packalen MS, Finkelstein SA (2021) Using water table depths inferred from testate amoebae to estimate Holocene methane emissions from the Hudson Bay Lowlands, Canada. Journal of Geophysical Research: Biogeosciences, 126, e2020JG005969. https://doi.org/10.1029/2020JG005969
Davidson SJ, Goud EM, Malhotra A, Estey CO, Korsah P, Strack M. (2021) Linear disturbances shift boreal peatland plant communities toward earlier peak greenness. Journal of Geophysical Research: Biogeosciences https://doi.org/10.1029/2021JG006403
Davidson SJ, Smith M, Prystupa E, Murray K, Nwaishi FC, Petrone RM, Strack M (2021) High sulfate concentrations maintain low methane emissions at a constructed fen over the first seven years of ecosystem development. Science of The Total Environment, 148014, https://doi.org/10.1016/j.scitotenv.2021.148014
Drever CR et al. (inc. Davidson, SJ) (2021) Natural Climate Solutions for Canada. Science Advances. 7 (23), eabd6034 doi: 10.1126/sciadv.abd6034
Elmes M, Davidson SJ, Price JS (2021) Ecohydrological interactions in a boreal fen-swamp complex, Alberta, Canada. Ecohydrology https://doi.org/10.1002/eco.2335
Engering A, Davidson SJ, Xu B, Bird M, Rochefort L, Strack M (2021) Restoration of a Boreal Peatland Impacted by an In-Situ Oil Sands Well-Pad 2. Greenhouse gas exchange dynamics. Restoration Ecology. https://doi.org/10.1111/rec.13508
Evans C, Peacock M, Baird A, Artz R, Craig E, Burden A, Callaghan N, Chapman P, Cooper H, Coyle M, Cumming A, Dixon S, Helfter C, Heppell C, Holden J, Gauci V, Grayson R, Jones D, Kaduk J, Levy PE, Matthews R, McNamara N, Misselbrook T, Oakley S, Page S, Rayment M, Ridley L, Stanley K, Williamson J, Worrall F, Morrison R (2021) Overriding water table control on managed peatland greenhouse gas emissions. Nature. https://doi.org/10.1038/s41586-021-03523-1
Geary BR, Everett R (2021) Running out of time? Peatland rehabilitation, archaeology and cultural ecosystem services. Mires and Peat. doi: 10.19189/MaP.2021.KHR.StA.2195
NOBEL PEAT PRIZE WINNER 2021 Gong J, Roulet N, Frolking S, Petrola H, Laine Am, Kokkonen N, Tuittila E-S (2021) Modelling the habitat preferences of two key Sphagnum species in a poor fen as controlled by capitulum water content. Biogeosciences. https://doi.org/10.5194/bg-17-5693-2020
Harris LI, Richardson K, Bona KA, Davidson SJ, Finkelstein SA, Garneau M, McLaughlin J, Nwaishi F, Olefeldt D, Packalen M, Roulet N, Southee FM, Strack M, Webster KL, Wilkinson SL, Ray JC (2021) The essential carbon service provided by northern peatlands. Frontiers in Ecology and the Environment. https://doi.org/10.1002/fee.2437
Irvine S, Davidson SJ, Price JS, Strack M (2021) Dissolved organic carbon production and transport within a constructed fen watershed in the Athabasca Oil Sands Region, Alberta, Canada. Journal of Hydrology, 126493. doi.org/10.1016/j.jhydrol.2021.126493
Junttila S, Kelly J, Kljun N, Aurela M, Klemedtsson L, Lohila A, Nilsson MB, Rinne J, Tuittila E-S, Vesten P, Weslien P, Eklundt L (2021) Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data. Remote Sensing. https://doi.org/10.3390/rs13040818
Kiely L, Spracklen DV, Arnold SR, Papargyropoulou E, Conibear L, Wiedinmyer C, Knote C, Adrianto HA (2021) Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications. https://doi.org/10.1038/s41467-021-27353-x
Lees KJ, Artz RRE, Chandler D, Aspinal T, Boulton CA, Buxton J, Cowie NR, Lenton TM (2021) Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of The Total Environment, 760, 143312. https://doi.org/10.1016/j.scitotenv.2020.143312
Lees K, Khomik M, Quaife T, Clark JM, Hill T, Klein D, Ritson J, Artz RRE (2021) Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.142613
Magnan G, Sanderson N, Pratte S (2021) Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration. Global Change Biology. https://doi.org/10.1111/gcb.16032
McCarter CPR, Wilkinson SL, Moore PA, Waddington JM (2021) Ecohydrological trade-offs from multiple peatland disturbances: The interactive effects of drainage, harvesting, restoration and wildfire in a southern Ontario bog. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126793
Moody CS, Worrall F (2021) Towards understanding organic matter fluxes and reactivity in surface waters: Filtering impact on DOC and POC degradation. Hydrological Processes, 35:e14067. https://doi.org/10.1002/hyp.14067
Norris J, Matzdorf B, Barghusen R, Schulze C, v. Gorcum B (2021) Viewpoints on Cooperative Peatland Management: Expectations and Motives of Dutch Farmers. Land. https://doi.org/10.3390/land10121326
Peacock M, Audet J, Bastviken D, Futter MN, Gauci V, Grinham AR, Harrison JA, Kent MS, Kosten S, Lovelock CE (2021) Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abeb36
Robroek BJM, Martí M, Svensson BH, Dumont MG, Veraart AJ, Jassey VEJ (2021) Rewiring of peatland plant–microbe networks outpaces species turnover. Oikos. https://doi.org/10.1111/oik.07635
Scholten RC, Jandt R, Miller EA, Rogers BM, Veraverbeke S (2021) Overwintering fires in boreal forests. Nature. https://doi.org/10.1038/s41586-021-03437-y
Serk H, Nilsson MB, Bohlin E, Ehlers I, Wieloch T, Olid C, Grover S, Kalbitz K, Limpens J, Moore T, Münchberger W, Talbot J, Wang X, Knorr K-H, Pancotto V, Schleucher J (2021) Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century. Scientific Reports. https://doi.org/10.1038/s41598-021-02953-1
Swinnen W, Broothearts N, Verstraeten G (2021) Modelling long-term alluvial-peatland dynamics in temperate river floodplains. Biogeosciences. https://doi.org/10.5194/bg-18-6181-2021
Wilkinson S, Furukawa AK, Wotton BM, Waddington JM (2021) Mapping smouldering fire potential in boreal peatlands and assessing interactions with the wildland-human interface in Alberta, Canada. International Journal of Wildland Fire. https://doi.org/10.1071/WF21001
Young DM, Baird AJ, Gallego-Sala AV, Loisel J (2021) A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Scientific Reports. https://doi.org/10.1038/s41598-021-88766-8
2020
Andrews LO, Payne RJ, Swindle GT (2020) Testate amoebae as non-pollen palynomorphs in pollen slides: Usefulness and application in palaeoenvironmental reconstruction. Geological Society. https://doi.org/10.1144/SP511-2020-34
Bechtold M, De Lannoy G, Reichle RH, Roose D, Balliston N, Burdun I, Devito K, Kurbatova J, Munir TM, Zarov EA (2020) Improved Groundwater Table and L-band Brightness Temperature Estimates for Northern Hemisphere Peatlands Using New Model Physics and SMOS Observations in a Global Data Assimilation Framework. Remote Sensing of the Environment. DOI: 10.1016/j.rse.2020.111805.
Brown SL, Goulsbra CS, Evans MG, Heath T, Shuttleworth E (2020) Low Cost CO2 Sensing: A Simple Microcontroller Approach with Calibration and Field Use. Hardware X, e00136. https://doi.org/10.1016/j.ohx.2020.e00136
Burdun I, Bechtold M, Sagris V, Komisarenko V, De Lannoy G, Mander Ü (2020) A Comparison of Three Trapezoid Models Using Optical and Thermal Satellite Imagery for Water Table Depth Monitoring in Estonian Bogs. Remote Sensing, 12 (12), 1980. DOI: 10.3390/rs12121980.
Burdun I, Bechtold M, Sagris V, Lohila A, Humphreys E, Desai AR, Nilsson MB, De Lannoy G, Mander Ü (2020) Satellite Determination of Peatland Water Table Temporal Dynamics by Localizing Representative Pixels of A SWIR-Based Moisture Index. Remote Sensing, 12 (18), 2936. DOI: 10.3390/rs12182936
Davidson SJ, Goud EM, Franklin C, Nielsen SE, Strack M (2020) Seismic Line Disturbance Alters Soil Physical and Chemical Properties Across Boreal Forest and Peatland Soils, Frontiers in Earth Sciences, 8:281. https://doi.org/10.3389/feart.2020.00281
Deane PJ, Wilkinson SL, Moore PA, Waddington JM (2020) Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments. Fire. https://doi.org/10.3390/fire3020021
Geange SR, von Oppen J, Strydom T, Boakye M, Gauthier T-L et al. (2020) Next-generation field courses: Integrating Open Science and Online Learning, Ecology and Evolution. https://doi.org/10.1002/ece3.7009
Gupta PK, Gharedaghloo B, Lynch M, Cheng J, Strack M, Charles TC, Price JS (2020) Dynamics of microbial populations and diversity in NAPL contaminated peat soil under varying water table conditions. Environmental Research. https://doi.org/10.1016/j.envres.2020.110167.
NOBEL PEAT PRIZE WINNER 2020 Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, Warren JM, Shi X, Yang X, Mao J, Ricciuto DM (2020) Rapid Net Carbon Loss From a Whole-Ecosystem Warmed Peatland. AGU Advances. https://doi.org/10.1029/2020AV000163
Harris L, Roulet NT, Moore TR (2020) Drainage reduces the resilience of a boreal peatland. Environmental Research Communications. https://doi.org/10.1088/2515-7620/ab9895
Heffernan L, Estop‐Aragonés C, Knorr K-H, Talbot J, Olefeldt D (2020) Long‐term Impacts of Permafrost Thaw on Carbon Storage in Peatlands: Deep Losses Offset by Surficial Accumulation. Journal of Geophysical Research: Biogeosciences. https://doi.org/10.1029/2019JG005501
Lees KJ, Artz RRE, Chandler D, Aspinall T, Boulton CA, Buxton J, Cowie NR, Lennton TM (2020) Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.143312
Lemmer M, Rochefort L, Strack M (2020) Greenhouse Gas Emissions Dynamics in Restored Fens after In-Situ Oil Sands Well Pad Disturbances of Canadian Boreal Peatlands. Frontiers in Earth Science. https://doi.org/10.3389/feart.2020.557943
Malhotra A,Brice DJ, Childs J, Graham JD, Hobbie EA, Stel HV, Feron SC, Hanson PJ, Iverson CM (2020) Peatland warming strongly increases fine-root growth, Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.2003361117
Markle CE, Moore PA, Waddington JM (2020) Primary Drivers of Reptile Overwintering Habitat Suitability: Integrating Wetland Ecohydrology and Spatial Complexity. BioScience. https://doi.org/10.1093/biosci/biaa059
McCarter C, Rezanezhad F, Quinton W, Gharedaghloo B, Lennartz B, Price J, Connon R, Van Cappellen P (2020) Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes. Earth Science Reviews. https://doi.org/10.1016/j.earscirev.2020.103227
Perryman CR, McCalley CK, Malhotra A, Fahnestock MF, Kashi NN, Bryce JG, Giesler R, Varner RK (2020) Thaw Transitions and Redox Conditions Drive Methane Oxidation in a Permafrost Peatland. Journal of Geophysical Research: Biogeosciences, 124:3. https://doi.org/10.1029/2019JG005526
Rezanezhad F, McCarter C, Lennartz B (2020) Wetland Biogeochemistry: Response to Environmental Change. Frontiers in Environmental Science – Biogeochemical Dynamics. https://doi.org/10.3389/fenvs.2020.00055
Riva F, Pinzon J, Acorn JH, Nielsen SE (2020) Composite Effects of Cutlines and Wildfire Result in Fire Refuges for Plants and Butterflies in Boreal Treed Peatlands. Ecosystems. https://doi.org/10.1007/s10021-019-00417-2
Thornton SA, Setiana E, Yoyo K, Dudin Y, Harrison ME, Page SE, Upton C (2020) Towards biocultural approaches to peatland conservation: The case for fish and livelihoods in Indonesia. Environmental Science and Policy, 114, 341-351. https://doi.org/10.1016/j.envsci.2020.08.018
Wilkinson SL, Tekatch AM, Markle CE, Moore PA, Waddington JM (2020) Shallow peat is most vulnerable to high peat burn severity during wildfire. Environmental Research Letters, 15 104032. https://doi.org/10.1088/1748-9326/aba7e8
van Huizen B, Petrone R (2020) Quantifying the spatial variability of melting seasonal ground ice and its influence on potential evapotranspiration spatial variability in a boreal peatland. Hydrological Processes. https://doi.org/10.1002/hyp.13840
2019
Burke SA, Wik M, Lang A, Contosta AR, Palace M, Crill PM, Varner RK (2019) Long-Term Measurements of Methane Ebullition From Thaw Ponds. Journal of Geophysical Research: Biogeosciences, 124:7. https://doi.org/10.1029/2018JG004786
Lane D*, McCarter C*, Richardson M, McConnell C, Field T, Yao H, Arhonditsis G, Mitchell CPJ (2019) Wetlands and low gradient topography are associated with longer hydrologic transit times in Precambrian Shield headwater catchments. Hydrological Processes. https://doi.org/10.1002/hyp.13609. *Authors contributed equally to the manuscript

For Peatland ECR
Connect with us
Subscribe to our quarterly newsletter