Follow #PeatTwitter and #PeatPaper on Twitter for new peat papers
2022
Wu, Y., X. Xu, C.P.R. McCarter, N. Zhang, M.A. Ganzoury, J.M. Waddington, C.-F. de Lannoy (2022) Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.153579
Schmidt, M., S. Davidson, M. Strack (2022) CO2 uptake decreased and CH4 emissions increased in first two years of peatland seismic line restoration. Wetlands Ecology and Management. https://doing.org/10.1007/s11273-022-09858-4
Gaffney, P.P.J., M.H. Hancock, M.A. Taggart, R. Andersen (2022) Restoration of afforested peatland: Effects on pore- and surface-water quality in relation to differing harvesting methods. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2022.106567
Cole, L.E.S, C.M. Åkesson, K. Anggi Hapsari, D. Hawthorne, K.H. Roucoux, N.T. Girkin, H.V. Cooper, M.J. Ledger, P. O’Reilly, S.A. Thornton (2022) Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene. https://doi.org/10.1016/j.ancene.2022.100324
Hupperts, S.F., E.A. Lilleskov (2022) Predictors of taxonomic and functional composition of black spruce seedling ectomycorrhizal fungal communities along peatland drainage gradients. Mycorrhiza. https://doi.org/10.1007/s00572-021-01060-3
Putra, S.S., A.J. Baird, J. Holden (2022) Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands. Hydrological Processes. https://doi.org/10.1002/hyp.14470
Hermans, R., R. McKenzie, R. Andersen, Y.A. Teh, N. Cowie, J.-A. Subke (2022) Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO2 effluxes. Biogeosciences. https://doi.org/10.5194/bg-19-313-2022
Marshall, C., H.P. Sterk, P.J. Gilbert, R. Andersen, A.V. Bradley, A. Sowter, S. Marsh, D.J. Large (2022) Multiscale Variability and the Comparison of Ground and Satellite Radar Based Measures of Peatland Surface Motion for Peatland Monitoring. Remote Sensing. https://doi.org/10.3390/rs14020336
Mazzola, V., M.P. Perks, J. Smith, J. Yeluripati, G. Xenakis (2022) Assessing soil carbon dioxide and methane fluxes from a Scots pine raised bog-edge-woodland. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2021.114061
2021
Harris, L.I., K. Richardson, K.A. Bona, S.J. Davidson, S.A. Finkelstein, M. Garneau, J. McLaughlin, F. Nwaishi, D. Olefeldt, M. Packalen, N. Roulet, F.M. Southee, M. Strack, K.L. Webster, S.L. Wilkinson, J.C. Ray (2021) The essential carbon service provided by northern peatlands. Frontiers in Ecology and the Environment. https://doi.org/10.1002/fee.2437
Andrews, L.O., J.G. Rowson, S.J.M. Caporn, N.B. Dise, E. Barton, E. Garrett, W.R. Gehrels, M. Gehrels, M. Kay, R.J. Payne (2021) Plant community responses to experimental climate manipulation in a Welsh ombrotrophic peatland and their palaeoenvironmental context. Global Change Biology. https://doi.org/10.1111/gcb.16003
Swinnen, W., N. Broothearts, G. Verstraeten (2021) Modelling long-term alluvial-peatland dynamics in temperate river floodplains. Biogeosciences. https://doi.org/10.5194/bg-18-6181-2021
Campeau, A., D. Vachon, K. Bishop, M.B. Nilsson, M.B. Wallin (2021) Autumn destabilization of deep porewater CO2 store in a northern peatland driven by turbulent diffusion. Nature Communications. https://doi.org/10.1038/s41467-021-27059-0
Norris, J., B. Matzdorf, R. Barghusen, C. Schulze, B. v. Gorcum (2021) Viewpoints on Cooperative Peatland Management: Expectations and Motives of Dutch Farmers. Land. https://doi.org/10.3390/land10121326
Kiely, L., D.V. Spracklen, S.R. Arnold, E. Papargyropoulou, L. Conibear, C. Wiedinmyer, C. Knote, H.A. Adrianto (2021) Assessing costs of Indonesian fires and the benefits of restoring peatland. Nature Communications. https://doi.org/10.1038/s41467-021-27353-x
Geary, B.R., R. Everett (2021) Running out of time? Peatland rehabilitation, archaeology and cultural ecosystem services. Mires and Peat. doi: 10.19189/MaP.2021.KHR.StA.2195
Serk, H., M.B. Nilsson, E. Bohlin, I. Ehlers, T. Wieloch, C. Olid, S. Grover, K. Kalbitz, J. Limpens, T. Moore, W. Münchberger, J. Talbot, X. Wang, K.-H. Knorr, V. Pancotto, J. Schleucher (2021) Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century. Scientific Reports. https://doi.org/10.1038/s41598-021-02953-1
Magnan, G., N. Sanderson, S. Pratte (2021). Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration. Global Change Biology. https://doi.org/10.1111/gcb.16032
McCarter, CPR, Wilkinson, SL, Moore, PA, Waddington, JM (2021) Ecohydrological trade-offs from multiple peatland disturbances: The interactive effects of drainage, harvesting, restoration and wildfire in a southern Ontario bog. Journal of Hydrology https://doi.org/10.1016/j.jhydrol.2021.126793
Elmes, M, Davidson, SJ, Price, JS (2021) Ecohydrological interactions in a boreal fen-swamp complex, Alberta, Canada. Ecohydrology https://doi.org/10.1002/eco.2335
Engering, A, Davidson, SJ, Xu, B, Bird, M, Rochefort, L, Strack, M (2021) Restoration of a Boreal Peatland Impacted by an In-Situ Oil Sands Well-Pad 2. Greenhouse gas exchange dynamics. Restoration Ecology https://doi.org/10.1111/rec.13508
Davidson, SJ, Goud, EM, Malhotra, A, Estey, CO, Korsah, P, Strack, M. (2021) Linear disturbances shift boreal peatland plant communities toward earlier peak greenness. Journal of Geophysical Research: Biogeosciences https://doi.org/10.1029/2021JG006403
Drever, CR et al. (inc. Davidson, SJ) (2021) Natural Climate Solutions for Canada. Science Advances, Vol. 7, no. 23, eabd6034 doi: 10.1126/sciadv.abd6034
Irvine, S, Davidson, SJ, Price, JS, Strack, M (2021) Dissolved organic carbon production and transport within a constructed fen watershed in the Athabasca Oil Sands Region, Alberta, Canada. Journal of Hydrology, 126493 doi.org/10.1016/j.jhydrol.2021.126493
Beaulne, J, Garneau, M, Magnan, J, Boucher, É (2021) Peat deposits store more carbon than trees in forested peatlands of the boreal biome. Scientific Reports 11: 2657, https://doi.org/10.1038/s41598-021-82004-x
Davidson, SJ, Smith, M, Prystupa, E, Murray, K, Nwaishi, FC, Petrone, RM, Strack, M (2021) High sulfate concentrations maintain low methane emissions at a constructed fen over the first seven years of ecosystem development. Science of The Total Environment, 148014, https://doi.org/10.1016/j.scitotenv.2021.148014
Wilkinson, S, Furukawa, AK, Wotton, BM, Waddington, JM (2021) Mapping smouldering fire potential in boreal peatlands and assessing interactions with the wildland-human interface in Alberta, Canada. International Journal of Wildland Fire. https://doi.org/10.1071/WF21001
Evans, C, Peacock, M, Baird, A, Artz, R, Craig, E, Burden, A, Callaghan, N, Chapman, P, Cooper, H, Coyle, M, Cumming, A, Dixon, S, Helfter, C, Heppell, C, Holden, J, Gauci, V, Grayson, R, Jones, D, Kaduk, J, Levy, PE, Matthews, R, McNamara, N, Misselbrook, T, Oakley, S, Page, S, Rayment, M, Ridley, L, Stanley, K, Williamson, J, Worrall, F, Morrison, R (2021) Overriding water table control on managed peatland greenhouse gas emissions. Nature, https://doi.org/10.1038/s41586-021-03523-1
Davies, MA, McLaughlin, JW, Packalen, MS, & Finkelstein, SA (2021) Using water table depths inferred from testate amoebae to estimate Holocene methane emissions from the Hudson Bay Lowlands, Canada. Journal of Geophysical Research: Biogeosciences, 126, e2020JG005969. https://doi.org/10.1029/2020JG005969
Davies, M, Blewett, J, Naafs, B, & Finkelstein, S (2021) Ecohydrological controls on apparent rates of peat carbon accumulation in a boreal bog record from the Hudson Bay Lowlands, northern Ontario, Canada. Quaternary Research, 1-14. https://doi.org/10.1017/qua.2021.22
Ackley, C, Tank, SE, Haynes, KM, Rezanezhad, F, McCarter, C, Quinton, WL (2021) Coupled hydrological and geochemical impacts of wildfire in peatland-dominated regions of discontinuous permafrost. Science of the Total Environment. 782:146841. https://doi.org/10.1016/j.scitotenv.2021.146841
Peacock, M, Audet, J, Bastviken, D, Futter, MN, Gauci, V, Grinham, AR, Harrison, JA, Kent, MS, Kosten, S, Lovelock, CE (2021) Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters. https://doi.org/10.1088/1748-9326/abeb36
Moody, CS, Worrall, F (2021) Towards understanding organic matter fluxes and reactivity in surface waters: Filtering impact on DOC and POC degradation. Hydrological Processes, 35:e14067 https://doi.org/10.1002/hyp.14067
Lees, KJ, Artz, RRE, Chandler, D, Aspinal, T, Boulton, CA, Buxton, J, Cowie, NR, Lenton, TM (2021) Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of The Total Environment, 760, 143312 https://doi.org/10.1016/j.scitotenv.2020.143312
Lees, K, Khomik, M, Quaife, T, Clark,JM, Hill, T, Klein, D, Ritson, J, Artz, RRE (2021) Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape, Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2020.142613
2020
Burdun, I, Bechtold, M, Sagris, V, Komisarenko, V, De Lannoy, G, Mander, Ü (2020) A Comparison of Three Trapezoid Models Using Optical and Thermal Satellite Imagery for Water Table Depth Monitoring in Estonian Bogs. Remote Sensing, 12 (12), 1980. DOI: 10.3390/rs12121980.
Burdun, I, Bechtold, M, Sagris, V, Lohila, A, Humphreys, E, Desai, A.R, Nilsson, MB, De Lannoy, G, Mander, Ü (2020) Satellite Determination of Peatland Water Table Temporal Dynamics by Localizing Representative Pixels of A SWIR-Based Moisture Index. Remote Sensing, 12 (18), 2936. DOI: 10.3390/rs12182936
Bechtold, M, De Lannoy, G, Reichle, RH, Roose, D, Balliston, N, Burdun, I, Devito, K, Kurbatova, J, Munir, TM, Zarov, EA (2020) Improved Groundwater Table and L-band Brightness Temperature Estimates for Northern Hemisphere Peatlands Using New Model Physics and SMOS Observations in a Global Data Assimilation Framework. Remote Sensing of the Environment. DOI: 10.1016/j.rse.2020.111805.
Andrews, L.O, Payne, RJ, Swindle, GT (2020) Testate amoebae as non-pollen palynomorphs in pollen slides: Usefulness and application in palaeoenvironmental reconstruction, Geological Society https://doi.org/10.1144/SP511-2020-34
Geange, SR, von Oppen, J, Strydom, T, Boakye, M, Gauthier, T-L et al. (2020) Next-generation field courses: Integrating Open Science and Online Learning, Ecology and Evolution https://doi.org/10.1002/ece3.7009
Lemmer, M, Rochefort, L, Strack, M (2020) Greenhouse Gas Emissions Dynamics in Restored Fens after In-Situ Oil Sands Well Pad Disturbances of Canadian Boreal Peatlands. Front. Earth. Sci. https://doi.org/10.3389/feart.2020.557943
Lees, KJ, Artz, RRE, Chandler, D, Aspinall, T, Boulton, CA, Buxton, J, Cowie, NR, Lennton, TM. (2020) Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.143312
Thornton, SA., Setiana, E., Yoyo, K., Dudin, Yulintine, Harrison, ME., Page, SE., Upton, C. (2020) Towards biocultural approaches to peatland conservation: The case for fish and livelihoods in Indonesia. Environmental Science and Policy, 114, 341-351 https://doi.org/10.1016/j.envsci.2020.08.018
Wilkinson, SL., Tekatch, AM, Markle CE, Moore, PA, Waddington, JM. (2020) Shallow peat is most vulnerable to high peat burn severity during wildfire. Environmental Research Letters, 15 104032 https://doi.org/10.1088/1748-9326/aba7e8
Gupta, PK., Gharedaghloo, B., Lynch, M., Cheng, J., Strack, M., Charles, TC., Price, JS. (2020) Dynamics of microbial populations and diversity in NAPL contaminated peat soil under varying water table conditions, Environmental Research, https://doi.org/10.1016/j.envres.2020.110167.
Brown, SL., Goulsbra, CS., Evans, MG., Heath, T., Shuttleworth, E. (2020) Low Cost CO2 Sensing: A Simple Microcontroller Approach with Calibration and Field Use, Hardware X, e00136, https://doi.org/10.1016/j.ohx.2020.e00136
Perryman, CR., McCalley, CK., Malhotra, A., Fahnestock, MF., Kashi, NN., Bryce, JG., Giesler, R., Varner, RK (2020) Thaw Transitions and Redox Conditions Drive Methane Oxidation in a Permafrost Peatland, Journal of Geophysical Research: Biogeosciences, 124:3, https://doi.org/10.1029/2019JG005526
Malhotra, A.,Brice, DJ., Childs, J., Graham, JD., Hobbie, EA., Stel, HV., Feron, SC., Hanson, PJ., Iverson, CM. (2020) Peatland warming strongly increases fine-root growth, Proc. Nat. Acad. Sci., https://doi.org/10.1073/pnas.2003361117
Davidson, SJ., Goud, EM., Franklin, C., Nielsen, SE., Strack, M. (2020) Seismic Line Disturbance Alters Soil Physical and Chemical Properties Across Boreal Forest and Peatland Soils, Front. Earth. Sci., 8:281. https://doi.org/10.3389/feart.2020.00281
Riva, F., Pinzon, J., Acorn, JH., Nielsen, SE. (2020) Composite Effects of Cutlines and Wildfire Result in Fire Refuges for Plants and Butterflies in Boreal Treed Peatlands, Ecosystems, https://doi.org/10.1007/s10021-019-00417-2
Deane, PJ., Wilkinson, SL., Moore, PA., Waddington, JM. (2020) Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments, Fire, https://doi.org/10.3390/fire3020021
Heffernan, L., Estop‐Aragonés, C., Knorr, K-H., Talbot, J., Olefeldt, D. (2020) Long‐term Impacts of Permafrost Thaw on Carbon Storage in Peatlands: Deep Losses Offset by Surficial Accumulation, Journal of Geophysical Research: Biogeosciences, ://doi.org/10.1029/2019JG005501
Harris, L., Roulet, NT., Moore, TR (2020) Drainage reduces the resilience of a boreal peatland, Environmental Research Communications, DOI: https://doi.org/10.1088/2515-7620/ab9895
van Huizen, B., Petrone, R. (2020) Quantifying the spatial variability of melting seasonal ground ice and its influence on potential evapotranspiration spatial variability in a boreal peatland, Hydrological Processes, DOI: https://doi.org/10.1002/hyp.13840
McCarter, C, Rezanezhad, F., Quinton, W., Gharedaghloo, B., Lennartz, B., Price, J., Connon, R., Van Cappellen, P. (2020) Pore-scale controls on hydrological and geochemical processes in peat: Implications on interacting processes, Earth Science Reviews, DOI: https://doi.org/10.1016/j.earscirev.2020.103227
Rezanezhad, F., McCarter, C., Lennartz, B. (2020) Wetland Biogeochemistry: Response to Environmental Change. Frontiers in Environmental Science – Biogeochemical Dynamics, DOI: https://doi.org/10.3389/fenvs.2020.00055
2019
Lane, D*., McCarter, C*., Richardson, M., McConnell, C., Field, T., Yao, H., Arhonditsis, G., Mitchell, C.P.J. (2019) Wetlands and low gradient topography are associated with longer hydrologic transit times in Precambrian Shield headwater catchments, Hydrological Processes, DOI: https://doi.org/10.1002/hyp.13609. *Authors contributed equally to the manuscript
Burke, SA., Wik, M., Lang, A., Contosta, AR., Palace, M., Crill, PM., Varner, RK. (2019) Long-Term Measurements of Methane Ebullition From Thaw Ponds, Journal of Geophysical Research: Biogeosciences, 124:7, https://doi.org/10.1029/2018JG004786